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Low-energy prethermal phase and crossover to thermalization in nonlinear kicked rotors
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In the presence of interactions, periodically driven quantum systems generically thermalize to an infinite-
temperature state. Recently, however, it was shown that in random kicked rotors with local interactions, this
long-time equilibrium could be strongly delayed by operating in a regime of weakly fluctuating random phases,
leading to the emergence of a metastable thermal ensemble. Here we show that when the random kinetic energy
is smaller than the interaction energy, this system in fact exhibits a much richer dynamical phase diagram, which
includes a low-energy prethermal phase characterized by a light-cone spreading of correlations in momentum
space. We develop a hydrodynamic theory of this phase and find a very good agreement with exact numerical
simulations. We finally explore the full dynamical phase diagram of the system and find that the transition toward
full thermalization is characterized by relatively sharp crossovers.
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I. INTRODUCTION

When brought out of equilibrium, isolated quantum many-
body systems generically involve a thermalization process
where local observables can be described by a Gibbs ensemble
at sufficiently long time [1–4]. Under specific circumstances,
the out-of-equilibrium dynamics following a quantum quench
can also exhibit a transient prethermal stage, where the sys-
tem experiences dephasing associated with the propagation
of nearly independent quasiparticles of very long lifetime
[5–12]. In this case, the system truly thermalizes over a
much longer time scale controlled by the collisions be-
tween quasiparticles. Such long-lived prethermal states have
been observed in cold-atom [13–15] and photon-fluid [16]
experiments.

In out-of-equilibrium physics, periodically driven inter-
acting systems play a peculiar role due to the absence of
energy conservation. While, generically, the interplay be-
tween driving and interactions makes the system evolve
toward an infinite-temperature state [17–19], recently differ-
ent scenarios have been put forward. Examples include the
phenomenon of many-body dynamical localization, which
brings the driven system to a stationary state [19–26], or the
use of high-frequency driving or long-range interactions to
induce metastable long-lived states [27–33].

Among periodically driven systems, the quantum kicked
rotor has played a major role, in particular due to the
phenomenon of dynamical localization [34], a striking man-
ifestation of quantum interferences analogous to Anderson
localization that has been thoroughly characterized exper-
imentally [35–39]. In a gas of weakly interacting kicked
bosons described at the mean-field level—the nonlinear
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kicked rotor (NKR)—it was shown that dynamical localiza-
tion breaks down [40–44], with the kinetic energy growing
subdiffusively up to arbitrarily long time. Recently, however,
it was suggested that by operating in a regime where the
strength of the random phases is smaller than a certain thresh-
old, one could inhibit interband transitions responsible for
heating in the NKR, thus inducing a metastable state char-
acterized by a thermal Gibbs ensemble [45].

In this article, we push this idea further and theoreti-
cally show that in situations where the interaction strength
becomes stronger than the random phases’ fluctuations, the
NKR not only displays a thermal phase, but also a low-energy
prethermal phase for which we develop an analytical, hydro-
dynamic description. Importantly, unlike the thermalization
process discussed in [45], which stems from inelastic colli-
sions between massive particles, the prethermal regime that
we identify is built upon long-lived independent phononic
excitations, which make the system resemble a superfluid at
equilibrium [46]. These excitations arise through the growth
of exponential momentum correlations spreading within a
light cone, a phenomenon that we study both theoretically
and numerically. We also point out that in the prethermal
phase, the NKR can be seen as the reciprocal version (in
momentum space) of a weakly interacting, spatially disor-
dered Bose gas of finite mean velocity in the low-energy limit
[47,48], with the velocity being controllable via the phase of
the kick modulation. We finally construct the full nonequilib-
rium phase diagram of the system and, in particular, describe
the crossover from the prethermal to the thermal phase and
analyze how it is impacted by a change of the system’s
parameters.

The article is organized as follows. First, in Secs. II
and III, we present a detailed analytical description of the
low-energy phase in the NKR, based on an adaptation of
the Bogoliubov-Popov theory of quantum fluctuations to
classically fluctuating low-dimensional disordered systems.
Then, in Sec. IV, we compare our analytical findings with
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direct simulations of the NKR. We find an excellent agree-
ment without any fitting parameter. In Sec. V, we numerically
explore the crossover from the prethermal to the thermal phase
in the NKR, in particular making contact with the results
reported in Ref. [45], and compute the full nonequilibrium
phase diagram of the system. Section VI finally summarizes
our findings. Technical details are collected in the Appendix.

II. LOW-ENERGY HYDRODYNAMIC THEORY OF THE
NONLINEAR KICKED ROTOR

A. Nonlinear kicked rotor

We consider an assembly of Na weakly interacting bosons
of mass m on a ring of length 2π/kr , subjected to a peri-
odically kicked potential. Following [40,44,45], we consider
a cubic local interaction with strength g > 0 in momentum
space [49] and model the dynamics using the Gross-
Pitaevskii-type equation

ih̄∂tψ = H (t )ψ + gNa|ψ |2ψ (1)

for the wave function ψ = ψ (k, t ) in momentum space (k
is the wave number), with the time-dependent kicked-rotor
Hamiltonian

H (t ) = h̄2k2

2m
− K cos(krx − φ)

∞∑
n=0

δ
( t

T
− n

)
. (2)

Here x ∈ [−π/kr, π/kr[ is the position on the ring. The
second term in the right-hand side of (2) describes a kicked
cosine potential: it is switched on at every period T and its am-
plitude −K cos(krx − φ) depends on the position on the ring,
K > 0 being called the kicking strength. Notice that we have
included a finite phase shift φ in the cosine modulation (we
choose φ ∈ [−π/2, π/2[ in the following). Within the low-
energy hydrodynamic mapping that one can construct from
(2) (see Sec. II C), we will see that this parameter plays a role
similar to a global velocity for a disordered one-dimensional
Bose gas (see Sec. II D). The wave function has the normal-
ization (see the Appendix for a summary of the conventions
we use)

kr

∑
k

|ψ (k, t )|2 =
∫ π/kr

−π/kr

dx

2π
|ψ (x, t )|2 = 1, (3)

where the sum in reciprocal space runs over discrete wave
numbers k = lkr (l ∈ Z) because of the spatial periodicity of
the Hamiltonian (2).

In the following, we study the time evolution of
an initial plane wave in momentum space, that is,
ψ (k, t = 0) = √

ρ0/Na. Here ρ0 = Na/(Nkr ) is the uniform
density of the wave in momentum space, where N is the
number of momentum lattice points (in the thermodynamic
limit, Na, N → ∞ with the ratio Na/N constant). The evolu-
tion operator between two consecutive kicks corresponding to

Eq. (1) reads

U (t + T, t ) = e−i[α(k)+gNa|ψ (k,t )|2] T
h̄ eiK cos(kr x−φ) T

h̄ , (4)

where α(k) = h̄2k2/(2m) denotes the kinetic energy.

B. Low-energy regime

A well-known regime of the noninteracting quantum
kicked rotor [g = 0 in Eq. (1)] corresponds to the limit of
large kick amplitude K . In that case, after a kick a particle
typically moves over a large distance and thus ends up at
a completely different position on the ring, which strongly
modifies the amplitude and the sign of the next kick. At long
enough time, the particle is thus subjected to a series of kicks
of quasirandom amplitudes, making the wave number k a
quasirandom variable. At large K the noninteracting kicked
rotor can thus be seen as a tight-binding model where a par-
ticle hops between sites of random momentum as a result of
the kicks, which is the counterpart in momentum space of an
Anderson disorder model in position space [50–52]. In this
picture, the kinetic phases α(k)T/h̄ in Eq. (4) play the role of
the on-site disorder. As such, they are often taken as random
numbers evenly distributed in the interval [0, 2π [ [provided
h̄k2

r T/(4mπ ) is irrational; in the opposite case, quantum reso-
nances occur [53–56]].

In the present article, however, we consider a different,
low-energy regime where both the kinetic phases and the
phases induced by the kicks are small compared to 2π . De-
noting by W the typical fluctuations of α(k), this condition
reads

KT

h̄
,

W T

h̄
� 2π. (5)

In a practical experiment, a weak value of W might be
achieved by operating in the close vicinity of a quantum reso-
nance. In addition, in the following we will focus on a regime
where the interaction strength much exceeds the fluctuations
of the kinetic energy:

W

gρ0
� 1. (6)

Together with (5), this condition guarantees that the dynam-
ics of the kicked particles becomes essentially dominated by
low-lying Bogoliubov phonons, yielding an enhanced coher-
ence of the system. In the recent work [45], typical values
for W and gρ0 were such that W/(gρ0) � 8, implying that
the observed dynamics of the NKR was mainly governed
by disorder scattering events on top of which (rare) inelastic
collisions were slowly thermalizing the system, similar to pre-
vious works considering disorder in position space [57,58]. In
strong contrast, when the inequality (6) is satisfied the density
fluctuations of the wave function become strongly suppressed,
corresponding to a suppression of particle scattering, and a
prethermal phase can emerge.

C. Hydrodynamic equations

To describe the low-energy phase in the NKR, we start by
expressing the stroboscopic evolution of the wave function
over one period. Using the momentum-space representation
of the operator exp[iK cos(krx − φ)T/h̄] and the fact that the
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kinetic and interaction energies are local in momentum space,
Eq. (4) gives us

ψ (k, t + T )= exp

{
−i[α(k) + gNa|ψ (k, t )|2]

T

h̄

}

×
∞∑

l=−∞
il e−ilφJl

(
KT

h̄

)
ψ (k + lkr, t ). (7)

Under the conditions of weak kinetic phases and weak kick
amplitudes introduced in Sec. II B, the wave function tends to
retain a robust coherence in momentum space. In other words,
ψ (k, t ) becomes a weakly varying function of k. This allows
us to linearize the wave function as

ψ (k + lkr, t ) � ψ (k, t ) + lkr∂kψ + l2k2
r

2
∂2

k ψ. (8)

Note that this expansion assumes a continuous approximation
of the discrete wave-vector-k basis, whose relevance will be
discussed in Sec. III C. We then insert Eq. (8) in the second
line of Eq. (7), and use the identities

∞∑
l=−∞

il e−ilφJl

(
KT

h̄

)
= ei KT

h̄ cos φ, (9a)

∞∑
l=−∞

lil e−ilφJl

(
KT

h̄

)
= KT

h̄
sin φ ei KT

h̄ cos φ, (9b)

∞∑
l=−∞

l2il e−ilφJl

(
KT

h̄

)
� iKT

h̄
cos φ ei KT

h̄ cos φ. (9c)

In Eq. (9c), we have dropped a quadratic correction
(KT/h̄)2 sin2 φ ei KT

h̄ cos φ , given that the kick strength is suf-

ficiently small; see Eq. (5). Equation (7) becomes

ψ (k, t + T ) � exp

{
−i[α(k)+gNa|ψ (k, t )|2−K cos φ]

T

h̄

}

×
[
ψ (k, t ) + KkrT sin φ

h̄
∂kψ

+ i
Kk2

r T cos φ

2h̄
∂2

k ψ

]
. (10)

Following a standard procedure for treating low-
dimensional Bose gases [59–61], we start by expressing
the wave function in the polar form (known as “Madelung
transformation”)

ψ (k, t ) =
√

ρ(k, t )

Na
exp

[
iθ (k, t ) − i(gρ0 − K cos φ)

t

h̄

]
,

(11)

where ρ(k, t ) and θ (k, t ) are the system’s density and phase in
momentum space. The gauge factor exp[i(gρ0 − K cos φ)t/h̄]
is introduced here for convenience, as it allows one to elimi-
nate constant corrections in the equations of motion below. In
the spirit of Eq. (8), we then assume that the wave function
varies weakly in time during a period, so that

ψ (k, t + T ) � ψ (k, t ) + T ∂tψ, (12)

and we write the momentum-space density ρ(k, t ) = ρ0 +
δρ(k, t ) in terms of its fluctuations on top of the uniform
background ρ0. Combining Eqs. (10)–(12), we obtain

1

2
√

ρ
∂tδρ + i

√
ρ ∂tθ =

√
ρ

T

[
e−i[α(k)+gδρ] T

h̄ − 1
] + Kkr sin φ

h̄
e−i[α(k)+gδρ] T

h̄

[
1

2
√

ρ
∂kδρ + i

√
ρ∂kθ

]

+ i
Kk2

r cos φ

2h̄
e−i[α(k)+gδρ] T

h̄

[
∂2

k
√

ρ + i√
ρ

∂k (ρ ∂kθ ) − √
ρ(∂kθ )2

]
. (13)

To simplify the nonlinear hydrodynamic equation (13), we
expand it with respect to α using Eq. (5), as well as with
respect to the density and phase-gradient fluctuations δρ and
∂kθ , respectively. The latter expansion stems from the condi-
tion (6) and will be justified a posteriori in Sec. II B.

Equating the real and imaginary part of this expansion, we
end up with the following coupled Bogoliubov–de Gennes–
type equations for the fluctuations of the NKR:

∂tδρ = Kkr sin φ

h̄
∂kδρ − ρ0

Kk2
r cos φ

h̄
∂2

k θ, (14)

∂tθ = Kkr sin φ

h̄
∂kθ+ Kk2

r cos φ

4h̄ρ0
∂2

k δρ− α(k)

h̄
− gδρ

h̄
. (15)

D. Analogy with a Bose gas moving in a disorder potential

Before examining the solutions of Eqs. (14) and (15), it is
interesting to notice that they are analogous to the dynami-
cal equations that govern the density and phase fluctuations

of a quasi-one-dimensional atomic Bose-Einstein condensate
moving at a certain velocity −v < 0 in a spatially random
potential V (x) (a two-dimensional version of this problem
has been studied in [47,48]). For such a system, the Gross-
Pitaevskii equation for the order parameter ψ = ψ (x, t ) reads

ih̄∂tψ = Hψ + gNa|ψ |2ψ, (16)

where

H = − h̄2

2m
∂2

x + V (x) + ivh̄∂x (17)

is the Hamiltonian without interactions in the comov-
ing frame. Looking for a solution of the form ψ (x, t ) =√

ρ(x, t )eiθ (x,t )−igρ0t/h̄ with ρ(x, t ) = ρ0 + δρ(x, t ), and ex-
panding Eq. (16) to first order in the disorder potential V (x)
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and in the fluctuations it induces (linear-response approach),
one finds [47,48]

∂tδρ = v∂xδρ − h̄ρ0

m
∂2

x θ, (18)

∂tθ = v∂xθ + h̄

4mρ0
∂2

x δρ − V (x)

h̄
− gδρ

h̄
, (19)

whose analogy with Eq. (15) is transparent. In particular, we
have the following correspondences in the NKR:

x ←→ k, V (x) ←→ α(k),

v ←→ Kkr sin φ

h̄
, m ←→ h̄2

k2
r K cos φ

.

Observe, in particular, that changing the parameter φ—which
originally appeared as a phase shift in the modulation am-
plitude of the kicks in Eq. (2)—amounts to modifying the
mean gas velocity and the effective mass in the position-space
mapping. As long as |φ| is not too close to π/2, however, the
modification of the effective mass does not have any qualita-
tive impact on the mapping.

III. PRETHERMAL DYNAMICS

A. General solution of the Bogoliubov–de Gennes equations

For the initial plane-wave state ψ (k, t = 0) = √
ρ0/Na, the

initial values of the density fluctuations and of the phase are

δρ(k, t = 0) = 0, θ (k, t = 0) = 0. (20)

Equipped with these initial conditions, we solve the
Bogoliubov–de Gennes equations (14) and (15) by introduc-
ing the new variables ϕ1 = δρ/

√
ρ0 and ϕ2 = 2i

√
ρ0θ and

their Fourier transform

ϕ̃i(x, t ) = kr

∑
k

ϕi(k, t )eikx, (21)

ϕi(k, t ) =
∫ π/kr

−π/kr

dx

2π
ϕ̃i(x, t )eikx, (22)

where the sum runs over discrete k = lkr with integer l (see
the Appendix for a summary of the conventions we use).
Going to Fourier space allows us to rewrite Eqs. (14) and (15)
as the linear system

ih̄∂t

(
ϕ̃1

ϕ̃2

)
= M

(
ϕ̃1

ϕ̃2

)
+ 2

√
ρ0α̃(x)

(
0
1

)
, (23)

where α̃(x) is the Fourier transform (22) of the random phases
α(k) and

M =
(

vh̄x εx

εx + 2gρ0 vh̄x

)
(24)

is the Bogoliubov–de Gennes Hamiltonian in the density-
phase representation, with εx = 1

2 k2
r x2K cos φ and v =

Kkr sin φ/h̄ (see Sec. II D).
The solution of the linear system (23) with initial condi-

tions (20) is formally given by

(
ϕ̃1

ϕ̃2

)
= −2i

√
ρ0

α̃(x)

h̄

∫ t

0
dt ′ei t ′−t

h̄ M
(

0
1

)
. (25)

To compute the matrix exponential, we diagonalize M. Its
two eigenvectors are U± = (±u1, u2)T , where

u1 =
√

εx

εx + 2gρ0
, u2 =

√
2gρ0

εx + 2gρ0
. (26)

The corresponding eigenvalues are �± = vh̄x ± Ex, where
Ex = √

εx(εx + 2gρ0) is the Bogoliubov spectrum for the sys-
tem at rest. The latter is quadratic at large x and becomes linear
at small x, Ex � csh̄|x|, where

cs = kr

√
gρ0K cos φ

h̄2 (27)

is the Bogoliubov speed of sound. We also define the healing
length of the system, ξ , as the typical scale (in k space)
separating these large- and low-x regimes; that is, εx ∼ 2gρ0

typically for x ∼ 2/ξ . This gives

ξ = kr

√
K cos φ

gρ0
. (28)

The exponential of M is now diagonal in the basis of
U± and can readily be expressed in the original basis, using
the change-of-basis matrix from Eq. (26). Performing the left
integration in Eq. (25) and coming back to the initial variables,
we finally obtain

δρ(k, t ) = 2ρ0

∫ π/kr

−π/kr

dx

2π
α̃(x)

εx

Ex

Ex[cos(xvt ) − cos(Ext/h̄)] − iEx sin(xvt ) + ivh̄x sin(Ext/h̄)

v2h̄2x2 − E2
x

e−ix(k−vt ), (29)

θ (k, t ) =
∫ π/kr

−π/kr

dx

2π
α̃(x)

vh̄x sin(xvt ) − Ex sin(Ext/h̄) + ivh̄x[cos(xvt ) − cos(Ext/h̄)]

v2h̄2x2 − E2
x

e−ix(k−vt ). (30)

B. Coherence function

To exemplify the above formalism, we compute the
same-time two-field correlation function of the system in
momentum space, which describes the time evolution of the

spatial coherence of the Bose gas:

g1(�k, t ) = ψ∗(0, t )ψ (�k, t )

|ψ (0, t )|2 , (31)
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where the overbar refers to an ensemble average over the
random energies α and |ψ (0, t )|2 = ρ0/Na is the density of
the initial plane wave. To evaluate this correlator, we insert
Eq. (11) into Eq. (31) and neglect the density fluctuations,
i.e., we use ρ(k, t ) = ρ0 + δρ(k, t ) � ρ0. This approxima-
tion is motivated by the well-known property that phase
fluctuations in general dominate over density fluctuations in
low-dimensional Bose systems at weak interactions [61,62].
In the dynamical problem considered here, this property be-
comes satisfied very quickly, typically after an evolution
time ∼h̄/(gρ0) [63]. Equation (11) then leads to g1(�k, t ) �
exp{i[θ (0, t ) − θ (�k, t )]}. Next we use that within the lin-
earization procedure considered here, the Hamiltonian is
quadratic so that the phase variance is a Gaussian random
variable [61]:

g1(�k, t ) � exp

{
−1

2
|θ (0, t ) − θ (�k, t )|2

}
. (32)

We now assume that the correlations of the kinetic energies
α(k) have a statistical translational symmetry, i.e., that their
correlator takes the form α∗(km)α(kn) = C̃(kn − km). It fol-
lows that

α̃∗(x)α̃(x′) = 2πC(x)δ(x − x′), (33)

where C(x) = kr
∑

l C̃(kl )eikr lx is the inverse Fourier trans-
form of C̃(kn). Inserting Eqs. (30) and (33) into Eq. (32), we
find, after some algebra,

ln g1(�k, t ) =
∫

dx

2π
C(x) sin2

(
�kx

2

){
2 sin2 (Ext/h̄)

v2h̄2x2 − E2
x

− 4vh̄x(vh̄x + Ex )

(v2h̄2x2 − E2
x )2

sin2

[
(vh̄x − Ex )t

2h̄

]

− 4vh̄x(vh̄x − Ex )

(v2h̄2x2 − E2
x )2

sin2

[
(vh̄x + Ex )t

2h̄

]}
.

(34)

From now on, we restrict ourselves to δ-correlated ki-
netic energies α(k), corresponding to a uniform spectrum
C(x) = krW 2/12 [equivalently, C̃(kn − km) = (W 2/12)δnm].
The proportionality factor 1/12 is chosen here so that W 2/12
coincides with the variance α(k)2 of a uniform on-site distri-
bution of the α′s in the interval [−W/2,W/2], which will be
used in the numerical simulations of Sec. IV. The integrals

FIG. 1. Four possible dynamical regimes of the coherence func-
tion g1 when v �= 0 and v < cs. The expression of g1 in each region
is given by Eq. (36).

in Eq. (34) range from −π/kr to π/kr . However, at long
enough time (typically, t  h̄/gρ0), they are dominated by
small x values, so that these bounds can be extended to ±∞.
Furthermore, in that limit the dispersion relation is accurately
described by its phononic branch: Ex � csh̄|x|.

We first consider Eq. (34) for a vanishing effective velocity
of the Bose gas, v = Kkr sin φ/h̄ = 0 (i.e., φ = 0). We find

ln g1(�k, t ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− W 2kr

48(gρ0)2ξ

|�k|
ξ

, |�k| � 2cst,

− W 2kr

48(gρ0)2ξ

2cst

ξ
, |�k|  2cst,

(35)

which describes a light-cone spreading of the correlations at
the Bogoliubov speed of sound cs. More precisely, g1 de-
cays exponentially with |�k| up to the Lieb-Robinson bound
|�k| = 2cst , where it reaches a plateau whose height de-
cays exponentially in time. This behavior basically comes
from the interference between quench-induced phonon ex-
citations with momenta ±h̄x and same energy h̄ω = Ex �
csh̄|x|. Note that within the light cone, Eq. (35) predicts a
time-independent coherence function. This is a characteristic
feature of a prethermal dynamics [5–12], where a nonequilib-
rium system at short time is governed by nearly independent
quasiparticles and exhibits an extremely slow dynamics.

The integral in Eq. (34) can also be evaluated in the general
case where v �= 0. In the subsonic regime v < cs, the coher-
ence function is governed by interference between phonons
of Doppler-shifted energies |Ex ± vh̄x| � (cs ± v)h̄|x|. This
gives rise to four dynamical regimes depending on the value
of |�k| compared to the three dynamical lengths (cs ± v)t and
2cst (see Fig. 1). In regions (I)–(IV), we find the following
behaviors for the g1 function:

ln g1(�k, t ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− W 2kr

48(gρ0)2ξ

1 + 3v2
r

(1 − v2
r )2

|�k|
ξ

(I),

− W 2kr

48(gρ0)2ξ

1

(1 + vr )2

( |�k|
ξ

+ vr
1 + vr

1 − vr

2cst

ξ

)
(II),

− W 2kr

48(gρ0)2ξ

1

1 − v2
r

|�k|
ξ

(III),

− W 2kr

48(gρ0)2ξ

1

1 − v2
r

2cst

ξ
(IV),

(36)

043304-5



MARTINEZ, LARRÉ, DELANDE, AND CHERRORET PHYSICAL REVIEW A 106, 043304 (2022)

where

vr = v

cs
(37)

is the incoming fluid velocity relative to the speed of sound
(27) (known as the Mach number). Equation (36) still de-
scribes an exponential decay of the coherence function up to
|�k| = 2cst with, however, two changes of slope at |�k| =
(cs ± v)t . For |�k| > 2cst , g1(�k, t ) still reaches a plateau
whose height decays exponentially in time.

Note that Eq. (34) also admits a well-defined limit in the
supersonic regime vr > 1. As discussed in the next section,
however, the validity of the approach is no longer guaranteed
in that case. Furthermore, under practical conditions the su-
personic regime is not easily observable due to the onset of
the thermal phase at relatively short time when vr > 1. This
point will be discussed more in detail in Sec. V.

C. Validity of the theory

Let us now discuss the range of validity of our hydrody-
namic description of the NKR. One of the main assumptions
used to derive the Bogoliubov–de Gennes equations (14) and
(15) is the smallness of the density fluctuation δρ compared
to the background density ρ0. To assess the validity of this
approximation, we evaluate a posteriori the square root of
δρ2/ρ2

0 from Eq. (29). This ratio is at all times bounded from
above by its long-time, t  h̄/(gρ0) value, which for vr < 1
reads

δρ2
1/2

ρ0
� W

gρ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
3 + v2

r

|1 − v2
r |

, ξ � kr,

√
kr

ξ

√
3v2

r −1+(
1−v2

r

)3/2

vr |1 − v2
r |3/4

, ξ  kr .

(38)

The small- and large-ξ/kr estimates (38) show that sufficient
conditions for the density fluctuations to be small are that
W/(gρ0) � 1 and vr is not too close to the singular sonic
limit vr = 1, at which the Bogoliubov phonons generated in
the fluid have the tendency to pile up in the vicinity of the
disorder grains, resulting in nonlinear fluctuations that cannot
be captured by the present perturbative approach [64,65]. In
the supersonic regime vr > 1, we find from Eq. (29) that
density fluctuations diverge and the approach is no longer
reliable. It is worth noting that in the most favorable case
where the fluid is at rest (vr = 0), one recovers the necessary
condition (6) discussed in Sec. II A [48,58].

Second, we examine the validity of the assumption of
weak variations of the wave function in momentum space
used in the Taylor expansion (8). To this aim, we note from
Eq. (36) that the coherence function decays over the typical
(momentum) scale δk = (gρ0ξ )2(1 − v2

r )2/[W 2kr (1 + 3v2
r )].

The expansion (8) requires δk � kr , which reads

W

gρ0
� ξ

kr

1 − v2
r√

1 + 3v2
r

. (39)

Note, again, a breakdown of the approach when vr ∼ 1. In
the case vr = 0, the right-hand side of this inequality reduces
to ξ/kr . In the numerical simulations presented below we use

nonlinearity and kick amplitudes such that this ratio is never
far from unity, leading again to the condition (6).

IV. NUMERICAL SIMULATIONS IN THE
PRETHERMAL PHASE

A. Numerical method

We now compare our analytical predictions for the
prethermal dynamics to numerical simulations. For these
simulations, we set h̄ = kr = T = 1 and work with a
finite system size N for the momentum grid. Pre-
cisely, the wave numbers k take the values k = −N/2 +
1, . . . , 0, . . . , N/2 (for N even). We also use periodic bound-
ary conditions, such that the position x also takes discrete
values x = ±π/N,±3π/N, . . . ,±(N − 1)π/N and the nor-
malization condition is written as

1

N

∑
x

|ψ (x, t )|2 =
∑

k

|ψ (k, t )|2 = 1, (40)

with the Fourier transform relation

ϕ̃i(x) =
∑

k

ϕi(k)eikx, (41)

ϕi(k) = 1

N

∑
x

ϕ̃i(x)eikx. (42)

Note that we recover Eq. (22) in the limit N → ∞. Finally, we
choose the initial plane-wave density ρ0 = 1, that is, Na = N .

To study the temporal evolution of the wave function, we
use a split-step-like numerical scheme, using that the time
propagator (4) between two consecutive kicks is the product
of two operators: U (k, t + 1) = Uk × Ux, with

Ux = eiK cos(x−φ), (43)

Uk = e−iα(k)−igNa|ψ (k,t )|2 , (44)

where Uk is diagonal in the wave-vector basis and Ux is diago-
nal in the position basis. To propagate ψ (k, t ) to the next kick
ψ (k, t + 1), we thus apply the following scheme:

ψ (x, t + 0+) = UxFFT−1[ψ (k, t )], (45)

ψ (k, t + 1) = UpFFT[ψ (x, t + 0+)], (46)

where ψ (x, t + 0+) refers to the wave function just after the
kick t and FFT represents the fast Fourier transform used as
numerical implementation of Eqs. (41) and (42).

Finally, to compute g1(�k, t ) efficiently we also use the
FFT and the relation (32)

g1(�k, t ) = FFT−1[|ψ (x, t )|2], (47)

where the average is performed over nd realizations of the
random phases α(k), which we choose uncorrelated and
uniformly distributed in the interval [−W/2,W/2] [so that
α(k)2 = W 2/12]. One may easily check that this corresponds
to a power spectrum C(x) = krW 2/12.

B. Results

We show in Fig. 2 numerical simulations of the coherence
function g1(�k, t ), with disorder and interaction parameters
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FIG. 2. Coherence function g1(�k, t ), for three different relative velocities vr = v/cs and constant speed of sound cs ≈ 0.31. Here t is in
units of the number of kicks and �k in units of kr . Panels (a)–(c) are density plots of g1 in the (t,�k) plane (numerical data) and panels (d-f)
are the cuts along the �k axis. Corresponding (K, φ) values are (a),(d) K = 0.02, φ = 0, (b),(e) K = 0.081, φ = 1.32, and (c),(f) K = 0.159,
φ = 1.44. All other parameters are fixed: W = 0.02, g = 5, N = 65536, and nd = 720 disorder realizations. In panels (a),(c), the dashed lines
indicate the position of the Lieb-Robinson bound �k = 2cst . In panels (d)–(f), dashed lines are numerical data, while solid thick ones are the
theoretical prediction, Eq. (36), with no adjustable parameter.

chosen such that the NKR lies in the pre-thermal phase:
W/(gρ0) � 4 × 10−3. The panels (a)–(c) show density plots
of the function in the (t,�k) plane for increasing values of
vr . At vr = 0, the light-cone and the Lieb-Robinson bound
2cst , see Eq. (35), are well visible. At vr �= 0, on the other
hand, the light cones display a more complicated structure.
The latter is detailed in panels (d)–(f), which show cuts of
the coherence function along the momentum axis at various
times. In these cuts, the analytical prediction (36) is shown
on top of the numerical data. The two curves nearly coincide
at each time, showing that the agreement between theory and
numerics is excellent without any fitting parameter. The cuts,
in particular, clearly emphasize the various dynamical regimes
of Fig. 1.

V. LONG-TIME THERMALIZATION

A. Crossover to thermal equilibrium and boiling

In the prethermal regime discussed so far, the dynamics
is entirely governed by independent phonons. In practice, the
system remains in this phase as long as interactions between
these phonons are negligible, i.e., at times much smaller than
the phonon collision time. Beyond this time scale, the system
starts to thermalize. In this section, we discuss the dynamical
transition toward the thermal phase in the NKR and make
contact with some of the results obtained in [45].

The full dynamical evolution of the NKR in the low-energy
limit, i.e., when condition (6) is satisfied, is illustrated by
the plots in Fig. 3, where we monitor in time the coherence
function g1(�k, t ) as well as the average position distribu-
tion nx(t ) = |ψ (x, t )|2, which gives a complementary point of
view. We recall that these two quantities are simply related
through the relation (47), which explicitly reads

g1(�k, t ) =
∫ π/kr

−π/kr

dx

2π
nx(t )e−i�kx. (48)

Note that with respect to the reciprocal system of interact-
ing bosons in a spatially disordered potential discussed in
Sec. II D, the position distribution nx(t ) here plays the role
of the momentum distribution.

In Fig. 3(a), we first show the coherence function computed
numerically at various times ranging over several decades.
For comparison we also show the prediction of Bogoliubov
theory at t → ∞ [corresponding to regime (I) in Eq. (36)].
Whereas the agreement is very good at short time, we observe
marked deviations for t � 103. At such long times, g1(�k, t )
starts to decrease faster than the prediction (36), although
the decay appears to remain exponential. This indicates a
more significant loss of coherence, which we attribute to the
presence of inelastic collisions between phonons. For t � 105,
finally, we observe a second change of behavior, where the
coherence function abruptly drops from unity to zero over a
single momentum site �k � kr .

To better understand these results, we show in Fig. 3(b)
a density plot of the average position distribution nx(t )
in the (x, t ) plane, pinpointing the location of the various
times considered in Fig. 3(a). The plot clearly showcases the
succession of three dynamical phases as time grows. First,
between t = 0 and t � 103, nx(t ) is rather narrow and cen-
tered around x = 0. This is the prethermal phase discussed in
the previous sections, where the physics is dominated by low
x values. Then, from t � 103 to 105, the distribution broad-
ens and becomes centered at a nonzero position that turns
out to be x = φ/kr . Finally, beyond t � 105, nx(t ) uniformly
covers the configuration space. The precise spatial profiles of
nx(t ) in these three regimes are shown in Fig. 3(c). In the
prethermal phase (lower red curve at t = t1 = 25), we also
display the theoretical prediction for nx(t ), calculated using
Eqs. (48) and (36): the distribution is indeed peaked around
x = 0. Its tails also display oscillations stemming from the
various interference between phonons at energies Ex ± vh̄x
[see Eq. (34)]. At t ∼ 103, the prethermal phase comes to
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FIG. 3. Long-time evolution of the NKR. From t = 0 onward, the system undergoes three successive dynamical phases. (a) Coherence
function g1(�k, t ) as a function of �k, at six successive times t = 2.5 × 101, 2.7 × 102, 1.4 × 103, 7.2 × 103, 3.7 × 104, 3.9 × 105 from top
to bottom. Notice, in particular, the time scales much longer than in Fig. 2. At short time, the function displays the characteristic light-cone
spreading of the prethermal phase (the dashed line is the prediction of Bogoliubov theory for t → ∞). At t � 103, g1 starts decaying faster
than the Bogoliubov prediction. At t � 105, g1 suddenly drops over a single momentum site. (b) Density plot of position distribution nx (t ) as
a function of time and position. (c) nx (t ) as a function of x for different times, corresponding to vertical cuts of (b) indicated by dashed lines.
Parameters are K = 0.10, φ = 0.7, g = 3.0 (i.e., vr ≈ 0.13), W = 0.5, N = 1024, and nd = 180 disorder realizations.

an end, indicating that phonon interactions start to govern
the dynamics and that the system thermalizes. Observe, how-
ever, that the crossover from the prethermal to the thermal
phase occurs within a relatively short time window. In the
thermal phase, nx(t ) is practically independent of time and
acquires a Lorenztian shape, corresponding to the Rayleigh-
Jeans thermal distribution that describes thermal equilibrium
in classical-field systems [47,57,66]. The fact that the posi-
tion distribution is centered around x = φ/kr in the thermal
phase can be elucidated by visualizing the kicking potential
of Eq. (2) on top of nx(t ), as is sketched in Fig. 4. In the
prethermal phase, all the physics is dominated by low-lying
excitations, such that the particles remain located near x = 0
despite the presence of the kicks. When the thermal phase sets
in on the contrary, inelastic quasiparticle collisions occur and
x �= 0 states become accessible. In practice, the particles then
spatially occupy the vicinity of the minimum of the kicking
potential −K cos(krx − φ), located at x = φ/kr ; see Fig. 4.

FIG. 4. Sketch showing the position distribution nx (t ) on top of
the spatial profile of the kicking potential, −K cos(krx − φ), in the
three dynamical phases (vertical axis is in arbitrary units). In the
prethermal phase (left panel), the physics is controlled by low-lying
excitations corresponding to nx (t ) being centered around x = 0. In
the thermal phase (middle panel), quasiparticle interactions allow the
system to populate a broader range of positions and nx (t ) becomes
centered on the potential minimum x = φ/kr . In the “boiling” phase,
finally (right panel), the system heats to infinite temperature and all
positions become equally populated.

The thermal phase discussed here was originally observed in
[45]. Because a larger ratio W/(gρ0) was considered, however,
no prethermal phase involving independent quasiparticles and
preceding the thermal regime was observed in that work (al-
though the term “prethermal” was used, somewhat abusively
in our opinion).

As seen in Figs. 3(b) and 3(c), finally, the thermal phase
is only metastable in the NKR. At very long times t � 105

(for the chosen parameters), the distribution becomes flat, in-
dicating that particles become able to move without restriction
over the whole configuration space despite the cosine form
of the kicking potential; see sketch in Fig. 4. This behavior
was also pointed out in [45], where it was referred to as a
“boiling.” In the boiling phase, interband transitions between
quasienergy states of the kicked rotor are no longer inhib-
ited. The system heats to infinite temperature, featuring a
time-independent state with flat (ergodic) position distribution
nx(t ) and, correspondingly, a total absence of coherence with
g1 decaying over a single site kr . Here too the crossover
between the thermal and the boiling regimes turns out to be
relatively fast.

B. Dynamical phase diagram

In the previous section, we have described the dynamical
crossover from the prethermal to the thermal regime, consid-
ering a fixed value of the ratio vr = v/cs, where we recall that
v = Kkr sin φ/h̄ and cs = kr

√
gρ0K cos φ/h̄2 is the speed of

sound. We expect, however, that the dynamics of the NKR
in the low-energy limit will be significantly impacted by the
value of this ratio. Indeed, remember that, in the hydrody-
namic description (15), v plays the role of a mean velocity in
reciprocal space. In the frame of superfluids flowing through a
small obstacle, however, it is known from the Landau criterion
[67,68] that the regime v ∼ cs is generally associated with a
breakdown of superfluidity [69,70]. Correspondingly, we have
seen in Sec. III C that in the present nonequilibrium context,
the validity of the low-energy Bogoliubov description is no
longer guaranteed when vr � 1 due to the strong increase of
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FIG. 5. Inverse participation ratio IPRx (t ) vs time, when cross-
ing over the prethermal–thermal–boiling phases. At short time, the
wave function covers the single state x = 0 and IPRx (t ) ∼ N . In the
prethermal phase, IPRx (t ) decreases slowly until it suddenly drops
as the system enters the thermal phase. A second drop at a later time
signals the onset of the boiling regime. Parameters are the same as in
Fig. 3: K = 0.1, φ = 0.7, g = 3.0 (i.e., vr ≈ 0.13), W = 1024, and
we use nd = 180 disorder realizations.

density fluctuations. It thus appears natural that a too large vr

value will favor the onset of thermalization. In this section,
we quantify precisely this statement, by exploring the full
dynamical phase diagram of the NKR when vr is changed.
To this aim, we have carried a large number of temporal
propagations of the initial plane-wave state for various values
of vr . To change vr , we have chosen to tune the phase φ at
fixed kick strength K . For each vr , we have monitored the
dynamical phase using a simple global observable, the inverse
participation ratio in position space, IPRx, defined as

IPRx(t ) = 1

N

∑
x

|ψ (x, t )|4. (49)

Use of this quantity is motivated by the idea that the wave
function in position space becomes more and more ergodic
as the system crosses over from the prethermal to the thermal
and boiling phases, as already noticed in Sec. V A. At t = 0
and in the early stages of the prethermal phase, for instance,
ψ (x, t ) is concentrated on the single position state x = 0.
Together with the normalization condition (40), this implies
that the inverse participation IPRx(t ) ∼ N is maximum. In
contrast, at very long time in the boiling phase, the wave func-
tion uniformly covers the configuration space and becomes
a purely random Gaussian variable, such that IPRx(t ) =
1/N

∑
x 2|ψ (x, t )|22 = 2|ψ (0, t )|22 = 2 reaches its minimum

value. A typical temporal evolution of IPRx(t ) is shown in
Fig. 5. It exhibits successive drops at the crossovers between
the prethermal and thermal phases and between the thermal
and boiling phases.

The dynamical phase diagram of the NKR in the (t, vr )
plane is displayed in Fig. 6(a). Recall that this diagram is ob-
tained in the low-energy limit where W/(gρ0) � 1. The phase
diagram indicates the prethermal, thermal, and boiling phases.
Observe that they are separated by rather sharp crossovers.
At very weak W [panel (a)], the prethermal phase extends
up to extremely long times when vr � 1. As expected, on
the contrary, at vr ≈ 1 the system thermalizes at relatively
short times, even though we do not observe any particular
divergence at vr = 1.

Figure 6(b) finally shows how the dynamical phase dia-
gram changes as the disorder strength W is increased at fixed
interaction strength g: at too large W , the prethermal phase
shrinks to zero and only a transition from a thermal to a
boiling phase is observed. This is typically the configuration
that was considered in [45]. In Fig. 6(c), finally, we show the
phase diagram at increasing interaction strength g and fixed
W . It indicates that when the interaction strength is increased
too much, the system directly jumps from the prethermal to
the boiling phase, without intermediate thermal phase of finite
temperature.

FIG. 6. Dynamical phase diagram of the NKR vs vr = v/cs in the low-energy limit [W 2/(gρ0 )2 � 1]. In all diagrams, N = 1024, K = 0.1
and we use nd = 100 disorder realizations. The ratio vr = v/cs is varied via a change of φ at constant K (the speed of sound cs = √

K cos φ is
thus not constant along the vr axis). (a) Phase diagram for W = 0.01 and g = 3.0. In the prethermal phase, described in Secs. III and IV, the
IPRx is large (of the order of system size). On the contrary, in the boiling phase (thermal phase with infinite temperature), the wave function is
fully ergodic and IPRx = 2. The crossovers between the three phases are highlighted by dashed and dotted lines. (b) Influence of the disorder
energy W at fixed g = 3 on the phase diagram. (c) Influence of the interaction strength g at fixed W = 0.5 on the phase diagram.
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FIG. 7. (a) Critical relative velocity vr,c separating the prethermal
and the thermal or boiling phase as a function of the thermal-
ization time τth [corresponding to the dashed curve in Fig. 6(a)].
The various curves are obtained for different disorder strengths
W = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 from top to bottom. Other
parameters are K = 0.1, g = 3.0, N = 1024, and we have used
nd = 100 disorder realizations. (b) Critical velocity at the longest
thermalization time computed, τth = 106, vs disorder strength. Sym-
bols are numerical data and the dotted line is a phenomenological
logarithmic fit.

C. Critical velocity

In Fig. 6(a), we observe the interesting property that the
thermalization time, that is, the time where the prethermal
dynamics breaks down and leaves room to a thermal equi-
librium state, varies extremely rapidly with the fluid velocity
around vr � 0.6. In practice, this nearly time-independent
value vr ≡ vr,c ∼ 0.6 thus acts as an effective critical velocity,
below which the system is always prethermal and beyond
which it is (almost) always thermal. This critical velocity line
is reported in Fig. 7(a) for various disorder strengths W and
in Fig. 7(b) we show its nearly constant value as a function
of W . In agreement with the phase diagrams in Figs. 6(b), vr,c

decreases to zero as W is increased, with a decay that appears
to be close to logarithmic.

VI. CONCLUSION

In this article, we have developed a low-energy hydro-
dynamic theory of the nonlinear kicked rotor with cubic
repulsive interactions and we have used it to describe the
quench dynamics of a plane-wave state and the ensuing
nonequilibrium prethermal regime. We have shown, in partic-
ular, that this system is the reciprocal version (in momentum
space) of a weakly interacting Bose gas of finite mean ve-
locity in the presence of a spatially disordered potential, the
mean velocity being controllable via the phase of the periodic
modulation of the kicks. The hydrodynamic approach is valid
provided the random kinetic energy is smaller than the interac-

tion energy and the effective mean gas velocity is smaller than
the speed of sound. In this regime, we have found an excel-
lent agreement with exact numerical simulations. Finally, we
have explored the dynamical crossover from the prethermal
to the thermal phase that occurs when the evolution time
becomes longer than the quasiparticle collision time and have
described how these phases are impacted by the interactions,
the fluctuations of the kinetic phases, and the effective mean
velocity.
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APPENDIX: CONVENTIONS

To help the reader throughout the manuscript, we recall
here the conventions we use and their numerical implemen-
tations.

In Hamiltonian (2), position x is defined on the circle
x ∈ [−π/kr, π/kr] with periodic boundary conditions. Wave
vector k then takes discrete values kl = lkr (l ∈ Z).

In simulations, we set h̄ = kr = T = 1 and work with
a finite system size N for the momentum grid, with peri-
odic boundary conditions. The wave numbers k then take
integer values k = −N/2 + 1, . . . , 0, . . . , N/2 (for N even).
Consequently, position x also takes discrete values xn =
±π/N,±3π/N, . . . ,±(N − 1)π/N .

Conventions and numerical implementation for Fourier
transform and wave-function normalization are given in
Table I.

TABLE I. Definitions used in the manuscript and their numerical
implementations.

Definition Numerical implementation

x ∈ [− π

kr
, π

kr
] xn = ± π

N , . . . ,± (N−1)π
N

kl = lkr |l ∈ Z k = − N
2 + 1, . . . , 0, . . . , N

2∫ π/kr

−π/kr

dx
2π

|ψ̃ (x)|2 = 1 1
N

∑
xn

|ψ̃ (xn)|2 = 1

kr
∑

kl =lkr
|ψ (kl )|2 = 1

∑
k |ψ (k)|2 = 1

ψ̃ (x) = kr
∑

kl =lkr
ψ (kl )eikl xn ψ̃ (xn) = ∑

k ψ (k)eikxn

ψ (kl ) = ∫ π/kr

−π/kr

dx
2π

ψ̃ (x)e−ikl x ψ (k) = 1
N

∑
xn

ψ̃ (xn)e−ikxn
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